

Systems Integration

White Paper Resulting from Architecture Forum Meeting

November 18, 19, 2014, Kongsberg Group, Kongsberg, Norway

Edited by:

Dr. Gerrit Muller, Buskerud University College, Embedded Systems Institute

Mr. Eirik Hole, Stevens Institute of Technology

Input was provided by the following participants in the Architecture Forum:

Name Organization Name Organization

Leandre Adifon Ingersoll Rand Jurjen Nicolai Bosch

Jonas Andersson HBV Per Erik Nissen Kongsberg Protech Systems

Maarten Bischoff FEI Company Teade Punter TNO-ESI

Paola Geromel Kongsberg Protech Systems Solve Raaen Kongsberg Maritime

Jan Morten Gimse Kongsberg Defense Mats Rosling Mycronic

Anders Gustavsson Mycronic Martin Simons Daimler

Pål Hellum Kongsberg Protech Systems Andy Turner Microsoft Devices Group

Eirik Hole Stevens Institute of Technology Egil Vassend Kongsberg Maritime

Bjørn Victor Larsen Kongsberg Defense Arne Wegger Kongsberg Defense

Hugo van Leeuwen FEI Company Klaas Wijbrans Philips PINS

Gerrit Muller HBV-NISE/TNO-ESI

Published April, 2015

2

1. Introduction

Systems Integration is the activity where components, concepts, technologies, and systems

are combined to validate (do we build what is needed) and verify (do we build what we

promised) early to mitigate risks of uncertainties and unknowns in specification and design.

In practice, many nasty failures pop-up during systems integration, causing delays and budget

overruns. Managers, engineers, and academics poorly understand Systems Integration. It is

the mirror-side of systems architecting (which they in general poorly understand too). Any

unforeseen interaction or dependency across disciplinary or component borders surfaces

during systems integration.

2. Experiences with Systems Integration

To get a feeling for the relevance of the topic, we made a quick inventory of experiences in

systems integration

 Do you have examples of excellent or disastrous systems integration?

In this group of 21 participants, we had examples of delays of years, cost overruns of tens of

millions of dollars, aborted projects, and even a business unit of a company that collapsed.

Architects know from experience that systems integration is a painful phase, where often

surprises pop-up causing significant delays and cost overruns. Examples of problems that pop-

up during systems integration are:

 Customer expectations that were not yet known

 Negotiation of interfaces, while integrating

 Misunderstanding of interfaces

 Poor robustness, due to insufficient design analysis

 No planning for failing test runs

 Late allocation of integration responsibility

 Late confrontation of components, especially of hardware and software

 Poor understanding of environment where the system will operate in

3

In general, the focus of an organization is dominantly on parts. A system is partitioned in

subsystems, subsubsystems, etc. to facilitate the development organization (work break down

structure, project organization), purchasing and logistics (structure of Product Data and Life

Cycle Management systems (PDM, PLM)), and manufacturing, service, and sales (using PDM

and PLM). Partitioning implies interfaces between parts; interfaces get a great deal of

attention, since they facilitate distributed work and later assembly.

However, many integration problems come from problems exceeding a single part. Especially,

few designers understand the dynamic behavior, where many parts interact. Dynamic

behavior is a major source of problems. The qualities of the system (performance, safety,

reliability, etc.) are the ultimate concerns of system stakeholders. These qualities typically

emerge from the implementation of dynamic behavior and the allocation of behavior to parts.

Designers understand qualities even less than the dynamic behavior. Many problems found in

integration show up as undesired emerging qualities. Focus of systems integration is therefore

on a limited set of (end-to-end) key performance parameters.

We also asked participants to write down what they see as Systems Integration. The answers

are in Appendix A.

3. Case Study Smartphones

Microsoft Devices Group, phones unit, presented the integration approach and challenges in

the Lumia development. Lumia smartphones appear in many variants and configurations. A

single product is actually many different instances of the same system. What is an efficient

way to get sufficient coverage? Next challenge is the dynamics of the product once users have

bought it. System Integration continues in the market, in the hands of the user. After 1 year

of use an end user’s devices is quite different from the one that left the factory.. Examples of

ongoing integration are software updates, 3rd party applications, Internet services evolution,

new devices and accessories. How to ensure forward compatibility of the system, and

backward compatibility of new components? Microsoft instruments their software extensively,

called telemetry, to support systems integration before and after release.

4

Vendors build smartphone devices from “off the shelf” components which are used

throughout the industry. The components align with the high-level system architecture of the

devices but often have a number of smaller incompatibilities on a detailed technical level.

Managing these incompatibilities is a repeating challenge when taking frequent new releases

of the core functionality from the vendor. Offsets between development cycles of product

and platform bring additional challenges. Product developers only know what they really need

at the time the platform supplier is done with development and no new functionality or

changes can be added. Product integration happens late in the platform development cycle.

Critical bugs may be rejected by the platform, as they claim that the platform behaves as

agreed originally and the platform cannot accept new requirements found so late in their

development cycle. There is a need for fast frequent integration cycles, where reuse of test

results is possible. Handling of bugs and latency in handling bugs is challenging across

platform product boundaries.

Challenge in the smartphone domain is the pace of innovation and the need for

differentiation. This is often in conflict with existing system drivers and architecture: how to

handle the consequences of incompatible changes? Most innovation forces changes that break

the existing architectures, since architectures tend to be finitely scalable, flexible and

extensible.

Microsoft MDG uses several systems architecting and integration approaches:

 API and interface management; fundamental to avoid integration surprises. Part of the

interface management approach is releasing of interfaces.

 Standardization; subsystems and interfaces via standards body or de facto.

 Strategic alignment; across companies, as part of an ecosystem. In this case, three

large companies Microsoft, MDG phones unit (former Nokia), and the chipset vendor

have to align their strategies to minimize systems integration problems later.

 Move from delivering monolithic firmware to delivering robust components

o In the past, components relied on being tested as part of an embedded system

5

o Nowadays, components cannot assume the exact system, hence they must

adapt to the environment.

o Consequently, components have to be tested against a wide range of possible

parameters.

 Release early and regularly:

o Use short, fast release cycles

o Constantly prove compatibility with the existing system

o Apply early non-functional testing

 Extend the integration scope to the user by Beta SW and telemetry

o This is needed, since you cannot know all usage scenarios and environments. In

addition, even if you did then you cannot afford to test them all.

o By instrumenting the system such that you can follow the data while the user

uses it, you can use the “field” for integration and test of all (evolving)

variants, configurations, applications, and circumstances.

 Automated code merge, where the machine resolves code-line differences originating

from various sources; this is fast and (to a point) reliable.

Systems architecture plays a crucial role for systems integration. Its contributions are:

 Definition of the system, its components and its context

 Design the component subsystems to work together (system design, architecture

design)

 Manage subsystem interfaces

 Define, manage, and track non-functional requirements

 Guide systems integration to focus on areas with high system complexity, syste level,

risk, weakness etc.

 Preempt systems integration problems as early as possible, for example by

documentation, models, and mental integration

6

4. Context and Life Cycle Evolution

The Microsoft MDG case shows clearly that validation of the system depends on the context of

the system. In addition, both the context and the system itself evolve over time;

consequently, systems integration turns into a continuous activity! We discussed these aspects

in a breakout session, using the following questions:

 How to cope with the context of the system?

 How to cope with life cycle evolution in systems integration?

An outcome of the discussion is that design and integration are not consecutive phases.

Instead of an instantaneous transition, it is a gradual changeover from design into integration.

Integration as activity should start already at the start of a project. A related observation is

that in today’s world, the system boundaries have become fuzzy, since everything is

connected to everything.

Principle 15.1 Systems Integration as activity starts at the beginning of development to

identify unknowns and consequences of uncertainties as early as possible. Systems

integration includes integration with the context of the system-of-interest.

Principle 15.2 Systems Integration continues after product deployment, since both

context and system keep evolving. The system needs instrumentation to support this

ongoing integration.

A fundamental challenge is that time and effort available for integration before release and

delivery is limited, while the usage space of the system in its context in unlimited. How to

achieve a reasonable coverage and how to ensure that the integration team will hit major

problems during integration? One suggestion to cope with integration of system and context is

to “eat your own food”; use the system internally to increase coverage and to get “real-life”

load on the system.

Challenge in the lifecycle evolution is that a company controls some lifecycle aspects, while

other aspects are outside the company’s control. Some domains, such as defense and electron

microscopes have long lifetimes that make obsolescence management an issue. A further

7

complication is that regulations change during the lifetime, which may have impact on fielded

systems.

One team proposes architecture measures to cope with life cycle changes, for example,

localization of impact in (upper) layers, modularity, and anticipation of changes for example

by roadmapping. Anticipation in architecture immediately triggers a discussion about risks

and limitations of anticipation. Some measures make sense and provide actual options for

future change. However, there are also numerous examples, where the anticipating measures

only added complexity and worsened the situation.

5. Case Study Remote Weapon Station

Kongsberg Group develops and manufactures a range of remote weapon stations that are

mounted on top of platforms such as armed vehicles, see Figure 1. The product portfolio

contains many variations in terms of weapons, sensors, vehicle integration, and applications.

The product itself consists of multiple units that connect via a network. These units integrate

into the vehicle (mechanical, electrical, logical). At next level, they integrate further with

domain applications and services creating to create desired military capabilities. Finally, the

systems are used in a wide variety of circumstances.

Figure 1. Remote Weapon Station, weapon and optics on top of the vehicle, controls

inside the vehicle.

8

Originally, the development team used a conventional V-model based integration strategy.

However, recently, the organization decided to move to an incremental approach. The main

drive for this change is an increase of internal and external complexity: more interfaces that

are external, more platform (e.g. vehicle) interaction, and more functionality in component-

based software.

Figure 2 visualizes the system in layers to explain the logical order of integration. The circled

numbers 1 to 8 indicate this logical order. The integration starts with testing the electronics

units forming the basis to run any software. Step 2 is adding the software infrastructure, such

as operating systems, middleware, and communication. Step 3 integrates the electronics units

and the software infrastructure and verifies internal connectivity of the core system. Step 4

uses external simulators simulating the platform to verify external connectivity.

Figure 2. The RWS system shown as layered system and the logical order of

integration.

Step 1 runs into a logical dependency problem: integration needs some initial (test) software,

while the software resources work on the software layers. Steps 2 and 3 are time-consuming

customer world

electronics hardware

HAL
OSs, middleware,

communication external

simulators

software components

external interfaces

external use cases

platform (vehicle), mechanical, and

optical hardware

1

2

3
4

5

6

7
HMI

8

internal use cases

5

9

9

do to variation of components. A problem in steps 2 to 4 is that the focus is on functionality,

while performance and robustness get insufficient attention.

Step 5 is integration of Hardware Abstraction Layer (HAL) with core system and mechanical

and optical hardware. The idea is that this happens incrementally in preparation of the

software functionality and internal use case that will be integrated in next increment.

Practical problem is that hardware components and use cases do not have a clear relation.

The other fundamental challenge is that hardware has a production time that dominates the

planning and may conflict with desired functional increments.

Step 6, integration and test of software functionality, and step 7 functional and performance

test of use cases at RWS system level, fit better in the incremental approach. However, there

is a tension between architecture development (holistic view) and the increments

(fragmented view, often with time pressure to realize short increments). The iterative

approach depends on automated testing, among others unit testing. One of the problems is

that only part of the software has automated testing provisions. Especially older software

lacks unit testing and provisions for test automation. In these steps, the SysML sequence

diagrams prove to be a good foundation for integration.

Steps 8 and 9 in the integration into the customer’s system and context. Interestingly, these

steps are known to be challenging, however, they run well. Experienced software developers

and testers perform this integration. This area with known high risks is followed up so closely

that few problems arise.

6. How to do systems integration?

The RWS case shows clearly that the main tension in systems integration is the need to

validate key performance early, while hardware and infrastructure tends to appear late in the

project plan. The order described in the case is typical for integration. Figure 3 shows a more

generic diagram from [Muller 2011].

10

Figure 3. Logical Order of Systems Integration is bottom-up. However, the goal of

early validation requires early confrontation of the whole system and its context.

One of the ways to achieve early validation, despite late delivery of some hardware is using

alternative implementations, ranging from modified old hardware, to models and simulators.

Figure 4 shows a spectrum of alternatives to validate earlier when hardware is not yet

available.

component

system function

product

subsystem

integrate
alpha

test

context

11

Figure 4. Spectrum of alternate environments to validate early.

Many organizations use the existing version of a system to integrate modified or new

components and functions. For example, the project runs new software on existing hardware.

If this integration reveals problems, then often it does not make sense yet to run the new

software on the scarce new hardware. One of the participants used the term “canary build”

for this way of working; the canary that detects problems early.

In general, systems integration requires an understanding of dependencies, ultimate

(customer-level) performance goals, and risks. Integrators and project leaders transform

these ingredients into an integration sequence (what to test, on what configuration, in what

order). The integration sequence in turn transforms into an integration schedule to manage

resources. In practice, integration schedules change continuously, due to trouble shooting

(integration fails) and due to project issues (delays of deliveries). Integration requires an

12

agile mindset. Many organizations have frequent short meetings (for example, 15 minutes at

the beginning of each day) once integration is in full flow.

Figure 5. The TNO-ESI cookbook for Integration and Test

TNO-ESI developed an integration and test cookbook as shown in Figure 51. This cookbook is

similar to the approach we discussed.

The best paper of IS2013 by Papke [Papke 2013] describes the “last Planner” as used in civil

engineering. In this approach, planners use a look-ahead window to assess maturity of

planned deliveries. When deliveries are assessed to be too immature, then the planning is

adapted to mitigate disruptions by immature deliveries (or in practice, also non deliveries).

Typical look-ahead windows are 2 and 6 weeks.

1 As part of the System integration and test course http://www.esi.nl/innovation-support/competence-

development/courses/system-integration-and-test.dot

1. Determine integration views

2. Determine integration risks

3. Determine integration sequence

4. Determine increments

5. Determine test environment

6. Match development-, integration- & test planning

7. Provide planning per increment

8. Capture all details, results, decisions

9. Iterate and check assumptions

http://www.esi.nl/innovation-support/competence-development/courses/system-integration-and-test.dot
http://www.esi.nl/innovation-support/competence-development/courses/system-integration-and-test.dot

13

7. What competence is required for systems integration?

Figure 6. Competences for systems integration related to phase and role in the V-

model.

In the last breakout session, we discussed the question “What competence is required for

systems integration?” Figure 6 shows the context dependence of this question. Role and phase

of the project impact desired competences for systems integration. In the beginning of the V-

model, a system integrator is a sparring partner for systems architects. The integrator

translates integration issues into needs or requirements and translates architectural ideas into

systems integration consequences. In this phase, an open-mind and analytical skills are

+
tra

ns
la
to

r

+
op

en
 m

in
de

d

+
an

al
yt
ic
al

+
pl
an

ne
r

+
sp

ar
rin

g
pa

rtn
er

-
un

ce
rta

in
ty +

pr
ec

is
e

+
st
ro

ng
-m

in
de

d

+
co

m
m

un
ic
at

io
n/

di
pl
om

at
ic

+
op

en
-m

in
de

d

ex
pl
or

at
or

y

+
tro

ub
le
 s
ho

ot
in
g

+
ex

pe
rie

nc
ed

+
fle

xi
bl
e

+
cr

ea
tiv

e

fo
rm

al

+
co

ns
ci
en

tio
us

+
st
ru

ct
ur

ed

70
%

 e

xp
lo
ra

to
ry

30
%

30
%

 fo
rm

al

70
%

configuration/change control + precise

+ XX strong-minded

14

essential to be a serious sparring partner for architects. We observe in practice, that systems

integrators have difficulties in coping with the inherent uncertainties early in the project.

In the late phases of the project, the systems integrator becomes a finisher, which requires

precision and strong-mindedness. However, similar to architects, systems integrators work

mostly by influencing and recognized authority. Hence, they need strong communication and

diplomatic skills. At the bottom of the V-model, integrators have foremost an exploratory

role. They are heavily involved in trouble shooting (early in integration, nearly nothing works

as expected), which tends to require experience. Flexibility and creativity help them in this

phase. Gradually the exploratory role transforms into a formal verification role, where

conscientious and structured work dominates.

A complementary role is configuration management and change control, which require

precision and extra strong-mindedness. Both aspects are crucial for systems integration. Ill-

defined configurations cause unexpected results and associated delays. Changes and change

propagation are essential to make progress; however, at the same time they complicate

configuration control and disrupt ongoing testing.

Other competences that came up in the discussion are:

 High tolerance of physical and mental pain

 Ability to see the big picture on all (most) use cases

 Ability to switch between large and small (jo jo) and know and like details

 Domain knowledge (technical depth and application knowledge)

 Ability to prioritize

 Operational capabilities; they are foot soldiers and machine owners

 Ability to report to senior management

 Know critical aspects and, hence, what to test

 Directness in telling the truth (prevent convolution of truth in every reporting level)

 Focus on solving problems (rather than blame assignment)

 Being able to drag in relevant experts (knowing who they are)

15

 Sense of urgency

 Motivated by seeing things work and work together, hands-on

 Communicative, collaborative, and humble

 Ability to manage risks

 Cross discipline

 Planning and adaptable to change

 Respected and trusted in the organization

 Ability to deal with pressure

Figure 7. Multiple roles contributing to systems integration.

From this long list and Figure 6 emerges a profile for a systems integrator that is not realistic.

Typically, the integration work is allocated to multiple employees with complementary

characteristics. Figure 7 from [Muller 2011] shows multiple complementary roles for systems

integration.

Principle 15.3 The systems integrator role is complementary to the systems architect

role. Systems integration requires many competences that in practice cannot be found in

project leader

organization

resources

schedule

budget

systems architect/

engineer/integrator

system requirements

design inputs

test specification

schedule rationale

troubleshooting

participate in test

system tester

test

troubleshooting

report

engineers

design

component test

troubleshooting

participate in test

machine owner

maintain test model

support test

logistics and

administrative support

configuration

orders

administration

16

a single person; Hence, systems integration needs complementary roles to cover all

required competences.

8. Discussion and conclusions

We started the forum with a number of preparatory questions, and we raised several question

for the breakout sessions. We will briefly discuss these questions here, and formulate answers

as far as our discussion resulted in them.

When does your organization start integrating? How does integration influence the early

architecting phase?

Systems integration needs to start at the beginning of the project. System integration

concerns, such as instrumentation and design of dependencies, are inputs to the architects.

Architects own the validation of key performance parameters, and as such, need to strive for

early validation.

What people in your organization understand systems integration? What role do they play

in projects?

In many organizations, there is insufficient understanding of systems integration. Key players

as project leaders and (lead) engineers sometimes underestimate systems integration. An

approach is to involve managers early in the cross cutting aspects, the “ilities” early.

Unfortunately, here a gap stats already; when people do not recognize cross cutting concerns,

how can they understand systems integration? Finally, participants managed a “horizon

effect”: managers that ignore problems that are beyond their current (short-term) horizon.

Software managers and engineers often claim that continuous and incremental integration

solves all integration issues. In practice, we see many opposite effects; the purely

incremental focus tends to ignore cross cutting concerns, such as performance and other

qualities, which “emerge” from increments. Another effect in continuous integration is that it

often also means continuous change, which can hamper the desired feedback. Continuous

integration and incremental work is highly relevant for systems integration. However, it

17

requires focus on cross-cutting concerns (for example, end-to-end performance) to benefit

from an incremental approach.

How to cope with the context of the system? How to cope with life cycle evolution in

systems integration?

Systems integration extends into the customer space, the operational context for the system.

Many system problems arise from unforeseen interaction between internal system design

choices and external circumstances. Major causes of system failure are the complex and

unpredictable characteristics of nature and human beings. Many forms of testing strive to hit

such problems early, for instance by stress, load, and accelerated lifetime testing. However,

there is no clear and generic answer on how to achieve acceptable (and affordable) coverage.

Continuation of systems integration in the field, as done by Microsoft MDG, is clearly part of

the solution. Note that the aerospace industry has been doing this for decades by using black

box recorders.

Awareness of the continuous change of systems and their context is a starting point to cope

with lifecycle evolution. Life cycle evolution is an increasing issue, due to increased

interoperability of systems. Our discussion did not reveal more solutions than the Microsoft

approach. The field of Systems of Systems Engineering recognizes this as one of the major

challenges.

How to do Systems Integration?

Summary of Section 6 on this topic is that systems integration requires an integration and plan

that strives to fail early. The way to achieve this is to integrate early, and to use old systems,

models, simulators, and prototypes creatively. Focus especially on key performance

parameters, at customer level (end-to-end). This necessitates that the system context

(environment) is included in the integration sequence. Thinking about risks (unknowns,

uncertainties) helps to determine what needs early integration attention.

18

What makes someone a good systems integrator?

Summary of section 7 is that a good system integrator is another sheep with 7 legs (similar to

systems architects [Muller 2011]). Hence, a team of complementary roles does the systems

integrator work. Complicating factor is that few managers understand systems integration;

even less managers understand the competence of good systems integrators.

One of the participants phrased it as “System integration (and Architecture) is a discipline,

and there is a whole lot to think about!”

Global trends

The scope of applications is increasing quickly. Systems that contribute to applications get

more and more interoperable. All these systems (cooperating as Systems of Systems) evolve

over time, as well as their context. Consequently, system boundaries get less clear,

interfaces and behavior gets more dynamic, systems, stakeholders and concerns get more

heterogeneous, and less and less people have overview and insight of end-to-end functionality

and performance. The sum of these trends makes systems integration even more important

and challenging.

Acknowledgements

Kongsberg group hosted this meeting. They provided an inspirational demonstration of bridge

systems, and organized a tour through the Kongsberg silver mines; an engineering marvel of

the past.

Literature

Muller, G.J. (2011). “Systems Architecting; A Business Perspective”, CRC Press, Boca Raton,

FL, USA; see chapter 7

Papke, B. and Dove, R. (2013) "Combating Uncertainty in the Workflow of Systems Engineering

Projects." Proceedings of INCOSE 2013 in Philadelphia, USA.

19

Appendix A, What is Systems Integration?

Answers of participants on the question “What is Systems Integration?”

 Assembly of predefined elements to deliver an expected outcome, i.e. a desired

function.

 - Bringing the pieces together to a working whole.

- Debugging & troubleshooting

 - Agile alignment of realization

 Planned assembly and verification of system components into sub assemblies and

finally the whole system removing risks early.

 Task and verification of an architectural decomposition of a product/system

 System integration is about creating working systems from (numerous) subsystems

where interfaces sometimes are given and sometimes can still be defined. In addition,

some “glue” (eg in behavioural terms) needs to be applied from the systems side.

A B

C

sub

project

new

old
A

B

time

SW

simulator

SW Sys

PM, CA

A B C

20

 Integrating parts defining in an architecting phase. Costumer level + design level.

 The architect’s grumpy, unpredictable spouse.

 The ultimate proof /truth /”revealers” of all design efforts.

 The lifecycle of a project from a practical engineering point of view, focusing on the

technical aspects of making systems play well together.

 Making “independent” systems working together to perform the functions of a large

system.

 Planning and execution of how to make the HW parts and SW from different suppliers

work together to deliver a complete system solution.

 Steering development by assembly & test by looking at qualities & testing.

 Realizing a new system by combining products functions and sensors with each other.

 “Putting” together parts to see if it works as designed.

 Complex and large products cannot be developed as one big project: it will consist of

many sub modules (supplied by other projects). System integration means:

- taking care that all sub modules are well specified.

- taking care that the interactions between the sub modules are well defined.

- Taking care that the end-user specifications are met.

 - Definition of Sub System Interfaces

- Management of Sub System Interfaces

- Hierarchical Test of Sub system composition (structure based)

- Phased Test of System Composition MIL->SIL->HIL->Mules->System. (6)

 - Closing the design look (balancing reductionism)

- Aligning minds, descriptions technology.

21

 Bringing sub systems together and verify the system.

 - Integration of our different products.

- Integration of 3rd party suppliers.

- Standard interfaces

o With standardization body

o Without a standardization body

