

Architecting for asynchronous developments and

life cycles

White Paper Resulting from Architecture Forum Meeting

November 15-16, 2017, Sioux Eindhoven, The Netherlands

Edited by:

Teun Hendriks, ESI

Gerrit Muller, USN-NISE and ESI

Eirik Hole, Stevens Institute of Technology

Input was provided by the following participants in the Architecture Forum:

Name Organization Name Organization

Maarten Bisschoff Thermo Fischer Scientific Jamie McCormack Thermo Fischer Scientific

Maarten Bonnema USN-NISE Gerrit Muller USN-NISE and ESI

Goran Hansson Mycronic Andre Nieuwland Philips

Teun Hendriks ESI Bob Reinke Roche Diabetes Care

Eirik Hole Stevens Institute Martin Simons Daimler AG

Kees Kooijman Sioux Embedded Systems Lauri Ståhle Patria

Hans Kuppens Sioux Embedded Systems Marnix Tas Sioux Embedded Systems

Bjørn Victor Larsen Kongsberg Defense Hugo van Leeuwen Thermo Fischer Scientific

Wouter Leibbrandt ESI Bruno van Wijngaarden Vanderlande

Alexander Lepple Daimler AG Martin Verheijen Thermo Fischer Scientific

Roland Mathijssen ESI Paul Zenden Sioux Embedded Systems

Published, November 2018

2

1 Introduction

Several trends in systems development increase the diversity of development and change

rates within the system and in its context. The ever-increasing integration and

interoperability, and the ever-increasing rate of technology developments are examples of

such trends. For example, many "physical" systems are nowadays connected to the cloud

and to apps running on smart phones and tablets. At the same time, they are part of Systems

of Systems. The effect is an increase of diversity of heartbeats and a decrease of the control;

many systems and components may change outside the architect's scope of control.

The members of the architecting forum discussed this topic, using the following questions:

• How much context do architects need to cover?

• How can architectures facilitate various heartbeats in the system life cycle?

• What architecture patterns cope with variation in heartbeats?

• How to cope with variation in heartbeat of disciplines?

• What is the relation to continuous delivery?

2 Time scales in operation of systems, and change rates of development

Over the past decade, system time scales have decreased significantly both in operation as

development of systems. Yet at the same time, diversity in time scales has widened, both

inter-system, and inter-organization.

Figure 1: Typical variation in system development lifecycles on a time scale of seconds (Muller, 2018)

apps

ICT infrastructure

other

physical

systems

other clouds

Cloud

physical

system

flex workspots
local operating

stations

other

physical

systems
services

other services

hour day month year

10
3

10
6

10
9

decade

humans

process regulation

seconds

3

Figure 1 shows an example of time scale variations in system development lifecycle

heartbeats (taken from (Muller, 2018). To relate these widening time scale variations to

challenges on architecting and architects, an inventory was taken on current times scales

as practiced both in operation of systems as change rates in developments and lifecycles.

Table 1: Time scales in System Operation and System Development (items ordered in increasing time scales)

Time scale System 0peration System Development

Nano-second
range

• Micro-electronics operation speed

• Acquisition time per pixel

• Move to next pixel time

Micro-second
range

• Micro scan

• Electron-beam repositioning

• Gateway routing of messages

• DB access timing

• Servo control loop rates

Milli-second
range

• Wafer die illumination

• Camera frame rates

• Typical event rates in systems

• Sensor pulse rate for on-body
medical measurements

Second range

• Wafer handling

• Write stroke

• Change rate for adaptive medical
treatment delivery

• HW data logging

Kilo-second
range

(¼ hour to
~12 days)

• Experiment time for 3D
reconstruction

• Analytical techniques for Life
Sciences

• Change rate in management systems

• Wafer mask production

• (Re-) Calibration of precision
equipment

• Rate of incoming errors/field reports

• Rate of incoming change requests /
feature requests

• SW patch release

Mega-second
range

(~12 days to
~30 years)

• Precision equipment maintenance
rate

• System operation interruption

• Failure of cloud infrastructure

• SW update

• HW update/refurbish

• Major service activity

• New SW release / new feature release

• New cloud release / new APP release

• New system-of-systems feature

• HW module development

• Medical device development and
approval by authorities

• Major revision of product platform

Giga second
range

(30+ years)

• Precision equipment end-of-life

This Table 1 lists time scales from nanosecond (10-9 second) to gigasecond (10+9 second, i.e.

30+ years) for both system operation and system development. Table 1 shows that times for

the most elementary system operations have moved into the nanosecond range, while the

most complex operations remain in the second to kilo-second range, despite their increasing

4

sophistication. Conversely, service & maintenance time scales (system downtimes for

repair, servicing, and equipment calibration) are to be pushed further out in the mega-

second range. This table also illustrates for System Development the increasing variation

between HW and SW development. Weekly SW patch releases have become commonplace,

whereas (specialized) HW development of critical modules may take many months to years.

This also requires a critical view for which purpose to develop specialized HW in-house, and

where to use, i.e. rely on commodity HW.

Business trends such as the increasing connectivity of systems to the internet are a further

source of variations in system development time scales. New features and SW updates, new

cloud or APP versions may follow each other in a matter of months, whereas new

development of regulated devices (e.g. medical devices) may take years. For professional

equipment a major overhaul of a product platform is feasible only once every 10-15 years.

Nonetheless, individual HW modules may undergo several revisions within this period.

3 A case of asynchronous development: decoupling customer project

engineering from product (platform) development in warehousing

To start off the discussions, a forum member presented a case study on warehouse

management systems. The warehousing business has seen tremendous growth, for a large

part due to growth in E-commerce business. Online shopping is now ubiquitous. Shoppers

expect the on-line ordering and delivery process to keep pace with their busy lives. Thus,

same-day deliveries, or even within a few hours are an important driver in this business.

Figure 2 shows the typical goods workflow in warehouses. On the receiving end, new supplies

come in, and replenish stocks in storage. Customer orders trigger picking of purchased

items, which are next packaged and forwarded to shipping.

To meet the rapid growth with also rapid change in customer demand, these warehouses

need increased flexibility and speed in order handling. Also new installations need to be

realized on short notice. These drivers have caused a shift from ‘pure’ project engineering

(made-to-order warehouse systems) to asynchronous product platform development with

upfront product platform definition and development of building blocks. In this shift, project

execution (building, configuring, and installing a new warehouse management system for a

specific customer) has been decoupled from product platform development.

5

Figure 2: Typical process flow in a warehouse management systems

For the product platform development to be able to operate asynchronously from system

projects, non-recurring project engineering costs needed to be limited and customer-

specific solutions restrained. The approach taken is to go for a reference architecture with

judiciously chosen building blocks with minimal interfaces, and minimal overall system

requirements. Most requirements are transferred to module level. The general strategy to

simplify complexity is by careful definition of building blocks to isolate sub-systems.

Domain-driven design (Evans, 2004) is used in creating re-usable building blocks (see also

Figure 3). Customer specific requirements are preferably solved in specific add-on modules

or handled in SW. Furthermore, architects may trade off some penalty in performance in

order to keep close to the reference architecture, and avoid project specific development.,

Motivators and enablers are needed to ensure success of a platform approach: specifically,

tools and presentations are needed to help sales and product development understand and

adopt the platform.

The challenge for architects in this transition is to change from a role as experienced system

designer to a designer and guardian of the product platform, managing expectations of many

stakeholders. The definition of the reference architecture is crucial; trade-offs in this

architecture determine the scope that it covers. If not well thought out, this could cause

business trouble and thwart asynchronous product development towards system projects.

6

Figure 3: The three key warehousing domains (left) considered in the domain-driven design approach (right)

In the discussion consensus arose that variations in life cycles are inevitable in complex

systems, yet it brought about several additional questions and issues for architecting:

• Are “Asynchronous” and “Different life cycle periods” the same or not?

• Customers are generally not prepared to pay for “under-the-hood” engineering. How

to deal with necessary platform infrastructure?

• How to deal with crosscutting concerns such as security and reliability, while still

respecting bounded contexts, and modularity in general?

• How to cope with market discovery (some new feature induces a yet unknown need).

Such market discovery is probably not predictable.

• Must asynchrony be treated as a problem, or can it be taken advantage of (in the way

that Google and Netflix do)? Clearly, this is more difficult with physical systems than

purely digital systems, but analogs could be drawn.

4 Causes for asynchronous development and development lifecycle variations

In asynchronous development, customer project/systems development is decoupled from

product platform and component development. Asynchronous development in systems

usually appears because of significant differences in cost, effort and lead-time of

functionality and/or constituting system components for innovations or urgency of identified

business opportunities.

The “Diamond of Innovation” model (Shenhar 2005) provides for a categorization of such

factors (see Figure 4) and was developed as an aid to select the right form of project

leadership for development of innovations. The model distinguishes the following four

categories:

7

1. “Novelty” – How intensely new are crucial aspects of the innovation and project?

2. “Technology” – Where is the innovation positioned on the scale from low-tech to super

high-tech?

3. “Complexity” – How complicated are the product, the process and the innovation?

4. “Pace” – How urgent is the work? Is the timing “normal, fast, time-critical or blitz”?

Figure 4:The diamond of innovation model: Four dimensions of project uncertainty that have to be managed.

This model can be applied to position innovation development within the organization (a

second use is to position the organization with respect to the outside world, and other

organizations). Variation in these categories, or in their combination, typically gives rise to

variations in lifecycles and development. In the following, we classify drivers for

asynchronous development using these categories are elaborated.

4.1 Level of novelty

The ‘level of novelty’ addresses the level of market uncertainty and it impacts the effort

and time it takes to define the product’s requirements clearly. The level of novelty may

vary from a derivative product with low-risk revisions and feature enhancements to

“breakthrough” products not having a defined market and customer base yet:

8

• Derivative products incorporating incremental updates to a successful product line

in general can be well-planned and typically run on a fixed cadence. The cadence

of component change may vary given the varying cost of change of SW, versus that

for dedicated HW, or commodity HW.

• Platform updates, i.e. an overhaul of a product concept and infrastructure, take

place only every 10-15 years for complex systems. These are complex undertakings

as they still must address the existing customer base and needs, as address new

market trends and counter competitive offerings.

• New products or features with rapidly changing customer requirements, unknown

market requirements, or varying market readiness levels typically need shorter

iterations and rapid prototyping towards a Minimum Viable Product.

With complex systems, the level of novelty may also vary from subsystem to subsystem. For

example in an Electron Microscope, the core electron beam functionality may be stable,

whereas image processing and analytics capabilities may undergo more rapid innovation.

4.2 Level of technology newness

The ‘level of technology’ addresses how much new or leading-edge technology is used. It

represents the level of technological uncertainty or technological update rates.

• Systems or components operating on the leading edge of technology e.g. physics

are more difficult to develop than low-tech systems.

• The stability of the technology, its rate of evolution, may drive also system or

component updates.

• On the other side of the spectrum, technology obsolescence drives change too.

Low-tech innovations have almost no technological risk, but they require maximum

efficiency to gain returns. As the level of technical complexity increases, so does the risk of

failure and the likelihood that a strive for maximum efficiency in development will backfire.

4.3 Level of complexity

The ‘level of complexity’ addresses how complex the system and its development are.

Complexity impacts the degree of formality and coordination needed to manage an

innovation step effectively. Level of complexity may vary based on the following factors:

• Type of development: SW versus HW, commodity HW versus dedicated HW.

9

• Regulatory regimes: safety-critical devices and systems have strict verification and

validation processes and lengthy approval cycles.

• System performance requirements versus vs technology stack.

• System complexity in general: large complex systems versus small systems.

• System break-down in modules, and amount, and variety of module suppliers.

4.4 Required pace of innovation

The pace of innovation drives the urgency or rhythm to complete innovation or updates. It

impacts the time management and autonomy of the project development team.

Factors driving the pace of innovation or updates may be the following:

• Sales cadence (trade shows, Model Years, Xmas sales) may set the pace of updates.

• Asynchronous appearances of issues (planned versus emerging):

o Blocking “in-field” problems (e.g. safety risk) have high priority.

o Field feedback leads to new features/gaps in current features.

• Varying customer demands come in at different times.

• Time to market aspects:

o (Faster) changing market requirements.

o Response to competitive offerings.

4.5 Consequences and examples

Variation in above aspects are causes for asynchronous development and variation in

development cycles. Examples of systems with variation in development life cycles are

numerous. Hardware, firmware, application software, user interface, operating system,

cloud based, different sub-systems like frames, actuators, electronic boards and

components, suppliers and personnel, all have their own life cycles.

Figure 5: Example of technology change rates & life cycle variations for medical equipment (Muller, 2005-2018)

catherization lab

kV

mA

monitoring

ultra

sound

tip

positioning

PC'sCardiology

Radiology

Hospital

Information System

PACS

MR scanner

CT scanner

X-ray catherization environment anno 2005

fast changing

PC technology

partners

slow changing

Xray and

mechanical

technology

medium changing

electronics

slow changing

infrastructure

1 year

commodity

hardware

and

software

new generation of

magnets

gradients

detectors

major SW

release

minor SW

release

workstation

useful life

MR

scanner

useful life

10 years

procedural

change

legislation

change

clinical

prototype

problem

response

3 months

10

In e.g. medical equipment development, SW patch releases may be issued weekly; SW

updates with new features released bi-annually, and HW updates only once every few years;

SW updates also are commonly offered for systems in the field (see Figure 5). The trade-off

with managing such asynchronous development is balancing new features versus the stability

of the system operating in the field.

In the automotive industry, vehicle maintenance in the garage now not only involves an oil

change, but also a SW change. Companies such as Tesla are even able to update over-the-

air most if not all SW inside its vehicles, even those with deep impact on the vehicle’s driving

behavior, e.g. changing SW to significantly reducing stopping distances on the Model 3 in

response to Consumer Reports complaints (The Verge, 2018).

5 Architecting for asynchronous development

Development approaches such as Product Line Engineering (Van der Linden et. al., 2007)

and Agile Development (e.g. Scaled Agile Framework) address process needs for

asynchronous development and target more rapid response to market needs. Yet the

architect and architecture need to make such asynchronous development possible.

Leffingwell (Leffingwell, 2007) calls this the required context of an intentional

architecture. Large systems, consisting of many subsystems, require an intentional

architecture: an explicitly designed, component-based architecture, where each

component can be developed as independently as possible and which conforms to a set of

purposeful, systematically defined interfaces. Agile component teams must be able to fit

their components into this architecture, and this architecture should be aligned with the

development teams’s core competencies, physical locations, and distribution.

Asynchronous development requires an architect to have a pro-active attitude and to plan

further than just the next release or model. Considering the longer time horizon, architects

will also need to align extra with their stakeholders, who may have different priorities and

timescales of their own. Hence, the key challenges architects phase with asynchronous

development and life cycles are the following:

• To understand the future, both market and technology wise.

• To plan ahead: align development steps and feature roll-out with stakeholders.

• To manage system partitioning and interfacing to support effective development

increments and asynchronous lifecycles.

• To fit in new developments and unforeseen market needs as they arise.

11

5.1 Understand the future

Architecting for asynchronous development and lifecycles means firstly to get a grip on what

the future may hold in terms of market developments and evolving requirements,

technology lifecycles, and secondly, to bring these, their relations, and their impact on the

system together in a technology roadmap. Similarly, the long-term desired structure,

patterns, and vision for the system can be documented in a reference architecture. Finally,

early deployment of a Minimum Viable Product (MVP) can provide first market feedback

rapidly to guide the further development process.

Market developments and evolving requirements. Architects need to understand market

developments and evolving requirements. How are their systems incorporated in e.g. the

production line of customers? What are new market requirements? When is the market ready

for a new feature? To some extent, also the market will tend to discover its needs, based

on product usage. Such market discovery is probably not predictable, and reason to support

faster update rates and cycles where possible.

Technology evolution and lifecycles. Technologies as used in a system have their own

lifecycles. Computing components typically evolve much faster than the large complex

systems themselves. Component obsolescence is hence an issue to be understood and

managed. Looming component obsolescence can be planned for with form-fit-function

replacements. Component obsolescence may not only affect HW, also e.g. third-party SW

may also be phased out by SW suppliers, and hence may become obsolete too.

Evolution rate of technology is also a factor to monitor in case of evolving technologies. E.g.

with computing technology a shift from FPGA and ASICs to general purpose (multi-core) CPU

has been made possible over the past 10 years. In automotive, battery technology is rapidly

improving range of electric vehicles at affordable cost levels. Monitoring such technology

trends is important to understand when they would cause a change in system concept, and

to understand which technology suppliers to work with.

Roadmaps. Roadmaps provides a structured (and often graphical) means for exploring and

communicating the relationships between evolving and developing markets, products and

technologies over time. The result, the roadmap, is a tool to bring together the various

elements of the future of a system in its market and/or society context. Roadmaps can take

many forms, but the most general and flexible approach comprises a visual time-based,

multi-layered chart (Phaal, Muller, 2009).

12

A key success factor for road mapping is ownership by specific individuals of both the

roadmaps and the road mapping process. A technology roadmap typically represents a

simplified, synthesized view of a complex system, and so the overall strategic roadmap is

often owned and edited by an architect.

An earlier SAF meeting (Muller and Hole, 2015) covered the topic of road mapping.

Reference architectures. Reference architectures (Muller and Hole, 2007) capture the

essence of existing architectures, and the vision of future needs and evolution. Having a

reference architecture provides guidance to assist in planning the architecture for a product

platform and evolutions thereof. Similar and complementary to a roadmap, it supports

making of strategic decisions on innovation cycles and steps.

Reference architectures must also have some means to reason about performance within

the platform, and the edges of design (which may be defined by the functional modules that

are part of the platform). Clarity in scope is needed for feasibility of a platform approach.

An earlier SAF meeting (Muller and Hole, 2007) covered the topic of reference architectures.

Usage profile data and (early) field feedback. A typical way to go to the market fast and

obtain early adopter feedback is to define and release a Minimum Viable Product (MVP).

Subsequent upgrades (HW and SW) can be delivered in subsequent releases and extensions.

Feedback from early adopters provides insights for new market needs and features.

A further key trend is to retrieve actual usage data from connected systems. Common

practice in the digital world and APPs, this trend also extends to professional systems e.g.

medical equipment and vehicles. To be able to do this efficiently, the necessary

architectural infrastructure needed must be laid out in the first version of the product. Also,

a back-office needs to be arranged. Care must be taken that the usage data collected is rich

enough, and descriptive enough, to allow comparison of actual usage versus foreseen usage

at time of development. These insights may drive further development.

5.2 Plan ahead

The obtained understanding of the (foreseeable) future should drive the making of a plan

forward. This planning is typically coordinated effort of Strategic Product Marketing en

Product Development, with a key role for the architect to arrive at a feature rollout plan,

and development cycles. This planning must address market needs and technology

developments, balance and align the various stakeholder needs and priorities, and align

cycle speeds and heartbeats of various development cycles.

13

Stakeholder alignment and feature rollout planning. A key planning deliverable for

enabling asynchronous development is a feature roll out plan. A feature rollout plan

positions and prioritize market needs and release of new features over time. Stakeholder

alignment on time to market may be required to achieve harmonization in the release

schedules for development efficiency.

Development roadmap. The feature rollout plan is one key ingredient for a development

roadmap. The second ingredient is the positioning of necessary system infrastructure

development items and replacement planning for obsolete components. Incorporating

planning for looming obsolescence requires impact analysis and definition of adopt/not

adopt moments ahead of time, to secure budget and development effort in the case of

“adopt” decision. On the other hand, HW preparations could be scheduled ahead of time if

other needs would make a component upgrade opportune in a cycle.

The combined result should yield an aligned development roadmap with various modules

and updates being released at different moments. This development roadmap forms a

contract between various development groups and product marketing. The contract has

meaning that if a group is in danger of not making the schedule, overtime may be observed

to live up to the commitment. For precision equipment, such a development roadmap is

typically made for 6 months increments over for three-year development look-ahead period

(on system and major sub system level) and maintained/adjusted after every increment.

Figure 6: Alignment of e.g. discipline development heartbeats as integer multiple periods

Alignment of development cycles and heartbeat. SW development for incremental

features typically can proceed much faster than development of dedicated HW components.

The development roadmap must incorporate different update cycles and align these.

Typically, development cycles are aligned on basis of integer multiple periods (see Figure

6) where:

HW development

heartbeat

Mechatronics

development heartbeat

SW development

heartbeat

SW development

heartbeat

Time

14

• scope (goal-based alignment) drives the slower cycles,

• the slower cycles to drive the faster cycle content,

• continuous integration ensures that the baseline is kept stable.

Internal development cycles could proceed faster than external release cycles. A stable

baseline can be maintained by continuous integration: multiple streams deliver into

integration phase, also those that span multiple sprints. All streams jointly fix all integration

issues that are found. Streams that span multiple sprints also deliver and integrate, and

possibly their functionality is de-activated for the users. The shorter the internal cycles are,

the less the differences to the (stable) baseline are, and so the less integration issues will

be present. The stabilized integration result can be released to the field, but a release has

release costs associated with it. It is a business decision how often to do this: it depends on

the release costs where optimum between frequency and costs lies.

5.3 Manage system partitioning and interfaces for asynchronous development

To enable asynchronous development technically, a platform approach needs to be in place.

Such a platform should comprise of set of (re-usable) functions/modules and an integration

framework which together span the solution space. This poses a restriction in a way, but as

the interfaces between the modules are known and stable, individual systems with

predictable behavior could be generated in a short time-to-market, which is a tremendous

benefit. The success of a platform approach and product line engineering hinges on a good

support for the business drivers, a clear platform/reference architecture, supporting

processes, and an aligned organization to achieve an effective product line engineering

capability (van der Linden et. al., 2007).

System partitioning. Typical drivers for system partitioning are functionality, modularity,

flexibility, and preparedness for future changes. Besides these, life cycle should also be a

criterion for system partitioning. Slow-changing, expensive-to-change system parts should

be separated from fast-changing, flexible system parts or functionality. A trade-off to be

made is product cost efficiency and total cost of ownership over the life cycle. The origin

or cause of different life cycles, i.e. a necessary change, may be diverse as explicated in

section 4.

Principle 20.1: Life cycle is a criterion for system partitioning. Slow-changing,

expensive-to-change system parts should be separated from fast-changing, flexible

system parts or functionality.

15

The general strategy to simplify complexity is by good definition of building blocks isolating

a sub-system. Here the guidance of a reference architecture is critical because the trade-

offs in the architecture determine the scope that it covers. Complex systems always must

deal with different life cycles, a good guidance is to assign only one life cycle to one

component.

Figure 7: Improving flexibility of firmware update, by allocating the update facility to application SW

A typical (lower cost) option to deploy additional functionality to the market is by

(automated) SW upgrades. Considering where to allocate necessary SW update facilities for

the various system components can provide for more flexibility. As application SW typically

will be updated more often than firmware of dedicated HW, planning flexibility of firmware

application updates can be greatly improved if the FW update facility for the

firmware/dedicated HW component is placed in the application SW (see Figure 7).

Interface management. The different life cycles and non-synchronized availability of system

modules suggest interfaces between the various modules that have stability over the typical

life span of the slowest cycling module.

Purposeful and systematical interface/API definition and management hence is important.

Standardization of the major hardware/firmware/software interfaces provides for stability.

Good practice is to have the interface determined by the using component (not the

providing component). Interfaces of components with uncertain lifetime should be

encapsulated rather than using their native interface directly.

A pattern for interface management to support life cycle variations is to provide capability

interfaces on server-side modules (with longer development cycles). The applications (with

shorter development cycles) then do not directly talk to the capability interface, but rather

to an internal layer that represents the usage need (see Figure 8). Typically, the use case

Application SW on COTS system

FW APP

FW

HW

interface

@ boot time

Heartbeat 2

(e.g. every 2 years)

Heartbeat 1

(e.g. every 3 months)

16

need is not as broad as the capability of a server component. Interface changes from one

server version to the other can then be managed in the service adapter, so that the

application logic is not affected.

Figure 8: Server Adapter Layer interface pattern to decouple usage from capability

Tool support for interface management can help, work-arounds are adding a second (or

extended) interface as a kind of “escape hatch”. Finally, interfaces can be assigned life

times too, and given expiration dates after which they are deprecated.

5.4 Fitting in new developments and unforeseen market needs

New developments and features to address unforeseen market need to be positioned into

the (evolving) development roadmap. First, an impact analysis is should be done and

corresponding concepts to be developed. The analysis must elaborate alternatives, review

the partitioning, and identify the needed deltas for which components to arrive at the

change details and corresponding concept description.

Figure 9: Checking deep or looking elsewhere in assessment of options

 BREADTH

 DEEP

Finding where to dive in

and how deep to go

Ask questions

SYSTEM WIDE VIEW

Look

elsewhere

17

The default assumption is to use the “same architecture as last time”. Only when a

significant change is needed (in a non-functional, i.e. system quality) then a new

architecture or update is to be considered. Assessment of options involves finding out where

to dive in (and how deep to go), or to look elsewhere for a solution concept is a key balancing

act (see Figure 9).

Final decisions are to be taken as late as possible (considering lead times, critical paths,

costs), and on a need basis (schedule). For complex developments, building a demo / proto

is useful to identify confirm the needed change, or to fail early when possible, such as to

be able to reconsider the concept selection.

Alignment and harmonization. New requests and concept options should be

compared/contrasted with already pending developments on the roadmap. Components on

slow cycles require clustering and larger changes per cycle; components on faster cycles

may operate on smaller, isolated changes per cycles.

Thus, a periodical update of the development roadmap, considering and weighing a set of

changes at the same time, is prudent. Creating overview and alignment is a task for the

architect or the system engineering group. For alignment of those change requests, identify

components that change over time:

• Components that don’t change need less attention.

• Perform impact analysis on components that do change.

• Acquire budget (alignment does not occur miraculously).

The slow life-cycle components identify the “must-have alignments”. Architects present

stakeholders with a plan for inclusion of a new change request, considering options and

supporting data, as well as the architect’s preference for the trade-off between

development synergy and time-to-market. Shorter cycle times here reduce the “fear of

missing out”: the time delay penalty incurred by being moved out to the next cycle. Risks

can be mitigated e.g. partial SW maturity / content; urgent updates can be achieved with

an asynchronous SW update in the field.

When fitting in new developments and unforeseen market needs, architects should make

conscious decisions on “go on” or “change because of” and provide supporting

context/explanation of the bigger picture as of ongoing development activities towards

stakeholders and customer project engineers.

18

6 Conclusions

In asynchronous development, customer project/systems development is decoupled from

product platform and component development. In complex systems with multiple system

levels, different life-cycle periods are inevitable. Life cycle then is a criterion for system

partitioning. A trade-off to be made is between product cost efficiency and total cost of

ownership over the life cycle. The origin or cause of different life cycles, i.e. a necessary

change, are diverse: technology, module suppliers, faster time to market, development

efficiency, changing or unknown market requirements, and market readiness.

Architecting for asynchronous development and lifecycles requires: an understanding of the

future, both market and technology wise; planning ahead to align development steps and

feature rollout with stakeholders; to manage system partitioning and interfacing and; to fit

in new developments and unforeseen market needs as they arise.

A general strategy is to simplify complexity by good definition of building blocks (isolating

sub-systems) with set of purposeful, systematically defined interfaces. A realistic, modular

(platform) architecture, tailorable to various solutions is one of the success factors for

asynchronous development. If systems operate on the edge of physics (e.g. electron

microscopes, wafer scanners, MRI scanners), can these be designed as an asynchronous

systems-of-systems: to what extent is that possible? On the other side of the spectrum, in

mass volume products, hardware cost is paramount; every penny counts. This may lead to

(unwanted?) close coupling to squeeze costs.

With respect to architecting for asynchronous development and life cycles, Product Line

Engineering was a major step (van der Linden et.al., 2007). Since then, there has been little

innovation in this field for architects overseeing complex systems: “hearing the same things

for the last 10 years”. Architecting for asynchronous development and lifecycles is a

challenging task indeed, relying on architecting knowledge, experience, and heavily

dependent on people-centered processes such as road mapping and stakeholder alignment.

19

7 Literature

Evans, E. Domain-driven design: tackling complexity in the heart of software. Addison-

Wesley Professional, 2004.

Leffingwell, D., Scaling software agility: best practices for large enterprises. Pearson

Education, 2007.

Muller, G., How to Create a Manageable Platform Architecture, Gaudi site, 2005-2018

http://gaudisite.nl/HowtoManageablePlatformArchitecturePaper.pdf

Muller, G., Hole, E., Reference Architectures; Why, What and How, System Architecting

Forum 2007 http://www.architectingforum.org/whitepapers/SAF_WhitePaper_2007_4.pdf

Muller, G., Hole, E., Roadmapping for a Changing World, System Architecting Forum 2015,

(http://www.architectingforum.org/whitepapers/SAF_WhitePaper_2015_16.pdf)

Muller, G., The challenge of increasing heterogeneity in Systems of Systems for architecting,

13th Annual Conference on System of Systems Engineering (SoSE), Paris, 2018.

Phaal, R., Muller, G., An architectural framework for roadmapping: Towards visual strategy.

Technological Forecasting and Social Change, 76(1), pp 39-49, 2009.

Scaled Agile Framework, https://www.scaledagileframework.com/

Shenhar, A., Dov D., Reinventing Project Management –The Diamond Approach to Successful

Growth and Innovation, Harvard Business School Press, Boston, MA, 2005.

The Verge, “Tesla can change so much with over-the-air updates that it’s messing with some

owners’ heads”, June 2018 https://www.theverge.com/2018/6/2/17413732/tesla-over-

the-air-software-updates-brakes

Van der Linden, F., Schmid, K., & Rommes, E., The product line engineering approach,

In Software Product Lines in Action (pp. 3-20), Springer, Berlin, Heidelberg, 2007.

http://gaudisite.nl/HowtoManageablePlatformArchitecturePaper.pdf
http://www.architectingforum.org/whitepapers/SAF_WhitePaper_2007_4.pdf
http://www.architectingforum.org/whitepapers/SAF_WhitePaper_2015_16.pdf
https://www.scaledagileframework.com/
https://www.theverge.com/2018/6/2/17413732/tesla-over-the-air-software-updates-brakes
https://www.theverge.com/2018/6/2/17413732/tesla-over-the-air-software-updates-brakes

